Надёжный костяк: расчёт стропильной системы двускатной крыши
Двускатная крыша образуется на базе каркаса, сочетающего в себе элементарность устройства и непревзойдённую надёжность. Но этими достоинствами костяк кровли в два прямоугольных ската может похвастаться только в случае тщательной подборки стропильных ног.
Содержание
Параметры стропильной системы двускатной крыши
К расчётам стоит приступать, если вы понимаете, что стропильная система двускатной кровли — это комплекс треугольников, самых жёстких элементов каркаса. Они собираются из досок, размер которых играет особую роль.
Длина стропил
Определить длину прочных досок для стропильной системы поможет формула a?+b?=c?, выведенная Пифагором.
Параметр «a» обозначает высоту и выбирается самостоятельно. Он зависит от того, будет ли подкровельное пространство жилым, также имеет определённые рекомендации, если планируется мансарда.
За буквой «b» стоит ширина здания, разделённая надвое. А «c» представляет собой гипотенузу треугольника, то есть длину стропильных ног.
Допустим, что ширина половины дома равна трём метрам, а крышу решено сделать высотой два метра. В этом случае длина стропильных ног будет достигать 3,6 м (c=?a?+b?=4+?9=?13?3,6).
К цифре, полученной из формулы Пифагора, следует приплюсовать 60–70 см. Лишние сантиметры понадобятся, чтобы вынести стропильную ногу за стену и сделать необходимые запилы.
Максимальная длина бруса, используемого в качестве стропильной ноги, – 6 м. Если требуется прочная доска большей длины, то прибегают к приёму сращения — прибиванию к стропильной ноге отрезка от ещё одного бруса.
Сечение стропильных ног
Для различных элементов стропильной системы существуют свои стандартные размеры:
- 10х10 или 15х15 см — для бруса мауэрлата;
- 10х15 или 10х20 см — для стропильной ноги;
- 5х15 или 5х20 см — для прогона и подкоса;
- 10х10 или 10х15 см — для стойки;
- 5х10 или 5х15 см — для лежня;
- 2х10, 2,5х15 см — для обрешётин.
Толщина каждой детали несущей конструкции кровли обусловливается нагрузкой, которую ей предстоит испытывать.
На сечение стропильных ног двускатной кровли влияет:
- нагрузка на кровельные скаты;
- тип строительного сырья, ведь «выдержка» бревна, обычных и клеёных брусов разнится;
- длина стропильной ноги;
- вид древесины, из которой были выстроганы стропила;
- протяжённость просвета между стропильными ногами.
Наиболее существенно на сечении стропильных ног сказывается шаг стропил. Увеличение расстояния между брусьями влечёт за собой усиление давления на несущую конструкцию кровли, а это обязывает строителя использовать толстые стропильные ноги.
Таблица: сечение стропил в зависимости от длины и шага
Длина стропильных ног (м) | Расстояние между стропилами (м) | Сечение бруса стропильной системы (см) |
Менее 3 | 1,2 | 8×10 |
Менее 3 | 1,8 | 9×10 |
От 3 до 4 | 1 | 8×16 |
От 3 до 4 | 1,4 | 8×18 |
От 3 до 4 | 1,8 | 9×18 |
До 6 | 1 | 8×20 |
До 6 | 1,4 | 10×20 |
Переменное воздействие на стропильную систему
Давление на стропильные ноги бывает постоянным и переменным.
Время от времени и с разной интенсивностью на несущую конструкцию крыши воздействуют ветер, снег и атмосферные осадки. В общем, скат кровли сравним с парусом, который под напором природных явлений может порваться.
Переменная ветровая нагрузка на стропила определяется по формуле W = Wo x k x c, где W — это показатель ветровой нагрузки, Wo — значение ветровой нагрузки, характерной для определённого участка России, k — поправочный коэффициент, обусловливаемый высотой сооружения и характером местности, а c — аэродинамический коэффициент.
Аэродинамический коэффициент может колебаться в рамках от -1,8 до +0,8. Минусовое значение характерно для поднимающейся крыши, а плюсовое — для кровли, на которую ветер давит. При упрощённом расчёте с ориентацией на улучшение прочности аэродинамический коэффициент считают равным 0,8.
Нормативное значение ветрового давления узнают по карте 3 приложения 5 в СНиП 2.01.07–85 и специальной таблице. Коэффициент, учитывающий изменение ветрового давления по высоте, тоже стандартизован.
Таблица: нормативное значение ветрового давления
Ветровые области | Ia | I | II | III | IV | V | VI | VII |
Wo, кПа | 0,17 | 0,23 | 0,30 | 0,38 | 0,48 | 0,60 | 0,73 | 0,85 |
Wo ,кг/м? | 17 | 23 | 30 | 38 | 48 | 60 | 73 | 85 |
Таблица: значение коэффициента k
Высота | Открытая местность | Закрытая местность с домами высотой более 10 м | Городские районы со зданиями выше 20 м |
до 5м | 0,75 | 0,5 | 0,4 |
от 5 до 10м | 1,0 | 0,65 | 0,4 |
от 10 до 20м | 1,25 | 0,85 | 0,53 |
На ветровой нагрузке отражается не только местность. Большое значение имеет зона расположения жилья. За стеной из высоких зданий дому почти ничего не грозит, но на открытом пространстве ветер может стать для него серьёзным врагом.
Снеговая нагрузка на систему стропил вычисляется по формуле S = Sg x µ, то есть вес снежной массы на 1 м? умножается на поправочный коэффициент, на значении которого отражается степень наклона кровли.
Вес снегового пласта указан в СНиП «Стропильные системы» и определяется типом местности, где построено здание.
Поправочный коэффициент, если скаты кровли кренятся менее чем на 25°, приравнивается к единице. А в случае наклона крыши на 25–60° этот показатель уменьшается до 0,7.
Когда крыша наклонена более чем на 60 градусов, снеговую нагрузку сбрасывают со счетов. Всё-таки с крутой кровли снег скатывается быстро, не успевая оказать негативного влияния на стропила.
Постоянные нагрузки
Нагрузками, воздействующим беспрерывно, считают вес кровельного пирога, включая обрешётку, утеплитель, плёнки и отделочные материалы для обустройства мансарды.
Вес кровли — это сумма веса всех материалов, использованных при строительстве крыши. В среднем он равен 40–45 кг/м.кв. По правилам на 1 м? стропильной системы не должно приходиться более 50 кг веса кровельных материалов.
Чтобы в прочности стропильной системы совсем не осталось сомнений, к расчёту нагрузки на стропильные ноги стоит добавлять 10%.
Таблица: вес кровельных материалов на 1 м?
Тип кровельного финишного покрытия | Вес в кг на 1 м? |
Рулонное битумно-полимерное полотно | 4–8 |
Битумно-полимерная мягкая черепица | 7–8 |
Ондулин | 3–4 |
Металлическая черепица | 4–6 |
Профнастил, фальцевая кровля, оцинкованные металлические листы | 4–6 |
Цементно-песчаная черепица | 40–50 |
Керамическая черепица | 35–40 |
Шифер | 10–14 |
Сланцевая кровля | 40–50 |
Медь | 8 |
Зелёная кровля | 80–150 |
Черновой настил | 18–20 |
Обрешётка | 8–10 |
Сама стропильная система | 15–20 |
Количество брусьев
Сколько стропил понадобится для обустройства каркаса двускатной кровли, устанавливают, разделив ширину крыши на шаг между брусьями и прибавив к полученному значению единицу. Она обозначает добавочное стропило, которое потребуется поставить на край кровли.
Допустим, между стропилами решено оставлять по 60 см, а длина крыши составляет 6 м (600 см). Получается, что необходимо 11 стропил (с учётом добавочного бруса).
Шаг брусьев несущей конструкции кровли
Чтобы определить расстояние между брусьями несущей конструкции кровли, следует обратить пристальное внимание на такие моменты, как:
- вес кровельных материалов;
- длина и толщина бруса — будущей стропильной ноги;
- градус наклона кровли;
- уровень ветровой и снеговой нагрузок.
Нормальным для стропильных ног считается шаг в 60–120 см. Выбор в пользу 60 или 80 см делают в случае строительства кровли, наклоненной на 45?. Таким же маленьким шаг должен быть при желании покрыть деревянный каркас крыши тяжёлыми материалами вроде керамической черепицы, асбоцементного шифера и цементно-песчаной плитки.
Таблица: шаг стропил в зависимости от длины и сечения
Длина бруса-стропила (м) | Просвет между стропилами (м) | ||
1 | 1,4 | 1,8 | |
Сечение стропил (см) | |||
Менее 2,8 | 4×12,5 | 4×17,5 | 4×20 |
2,8–3,5 | 4×17,5 | 4×20 | 4×22,5 |
3,5–4,2 | 4×20 | 4×25 | 5×25 |
4,2–5 | 4×22,5 | 6×25 | 7,5×25 |
Более 5 | 6×25 | 7,5×25 | 10×25 |
Формулы расчёта стропильной системы двускатной крыши
Расчёт стропильной системы сводится к установлению давления на каждый брус и определению оптимального сечения.
При расчёте стропильной системы двускатной кровли действуют следующим образом:
- По формуле Qr=AxQ узнают, какова нагрузка на погонный метр каждой стропильной ноги. Qr — это распределённая нагрузка на погонный метр стропильной ноги, выраженная в кг/м, A — расстояние между стропилами в метрах, а Q — суммарная нагрузка в кг/м?.
- Переходят к определению минимального сечения бруса-стропила. Для этого изучают данные таблицы, занесённой в ГОСТ 24454–80 «Пиломатериалы хвойных пород. Размеры».
- Ориентируясь на стандартные параметры, выбирают ширину сечения. А высоту сечения вычисляют, используя формулу H >= 8,6·Lmax·sqrt(Qr/(B·Rизг)), если уклон крыши a < 30°, или формулу H >= 9,5·Lmax·sqrt(Qr/(B·Rизг)), когда уклон крыши a > 30°. H — это высота сечения в см, Lmax — рабочий участок стропильной ноги максимальной длины в метрах, Qr — распределённая нагрузка на погонный метр стропильной ноги в кг/м, B — ширина сечения см, Rизг — сопротивление древесины на изгиб, кг/см?. Если материал произведён из сосны или ели, то Rизг может быть равен 140 кг/см? (1 сорт древесины), 130 кг/см? (2 сорт) или 85 кг/см? (3 сорт). Sqrt — это квадратный корень.
- Проверяют, соответствует ли величина прогиба нормативам. Она не должна быть больше цифры, которая получается в результате деления L на 200. Под L понимается длина рабочего участка. Соответствие величины прогиба соотношению L/200 выполнимо только при верности неравенства 3,125·Qr·(Lmax)?/(B·H?) <= 1. Qr обозначает распределённую нагрузку на погонный метр стропильной ноги (кг/м), Lmax — рабочий участок стропильной ноги максимальной длины (м), B — ширину сечения (см), а H — высоту сечения (см).
- Когда выше представленное неравенство нарушается, показатели B и H увеличивают.
Таблица: номинальные размеры толщины и ширины пиломатериала (мм)
Толщина доски — ширина сечения (B) | Ширина доски — высота сечения (H) | ||||||||
16 | 75 | 100 | 125 | 150 | — | — | — | — | — |
19 | 75 | 100 | 125 | 150 | 175 | — | — | — | — |
22 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | — | — |
25 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 |
32 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 |
40 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 |
44 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 |
50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 |
60 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 |
75 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 |
100 | — | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 |
125 | — | — | 125 | 150 | 175 | 200 | 225 | 250 | — |
150 | — | — | — | 150 | 175 | 200 | 225 | 250 | — |
175 | — | — | — | — | 175 | 200 | 225 | 250 | — |
200 | — | — | — | — | — | 200 | 225 | 250 | — |
250 | — | — | — | — | — | — | — | 250 | — |
Пример расчёта несущей конструкции
Предположим, что a (угол наклона крыши) = 36°, A (расстояние между стропилами) = 0,8 м, а Lmax (рабочий участок стропильной ноги максимальной длины) = 2,8 м. В качестве брусьев используется материал из сосны первого сорта, а это значит, что Rизг = 140 кг/см?.
Для покрытия кровли выбрана цементно-песчаная черепица, и поэтому вес крыши составляет 50 кг/м?. Суммарная нагрузка (Q), которую испытывает каждый квадратный метр, равна 303 кг/м?. А для строительства стропильной системы используются брусья толщиной 5 см.
Отсюда вытекают следующие вычислительные действия:
- Qr=A·Q= 0,8·303=242 кг/м — распределённая нагрузка на погонный метр бруса-стропила.
- H >= 9,5·Lmax·sqrt(Qr/B·Rизг).
- H >= 9,5·2,8·sqrt(242/5·140).
- 3,125·Qr·(Lmax)?/B·H? <= 1.
- 3,125·242·(2,8)? / 5·(17,5)?= 0,61.
- H >= (примерная высота сечения стропила).
В таблице стандартных размеров нужно найти высоту сечения стропил, близкую к показателю 15,6 см. Подходящим является параметр, равный 17,5 см (при ширине сечения в 5 см).
Эта величина вполне соответствует показателю прогиба в нормативных документах, и это доказывается неравенством 3,125·Qr·(Lmax)?/B·H? <= 1. Подставив в него значения (3,125·242·(2,8)? / 5·(17,5)?), получится обнаружить, что 0,61 < 1. Можно сделать вывод: сечение пиломатериала выбрано верно.
Видео: подробный расчёт стропильной системы
Расчёт стропильной системы двускатной крыши — это целый комплекс вычислений. Чтобы брусья справились с возлагаемой на них задачей, строителю нужно безошибочно определить длину, количество и сечение материала, узнать нагрузку на него и выяснить, каким должен быть шаг между стропилами.